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ABSTRACT

A kinematic tracker is a classical tracking system. The idea behind kinematic
tracking is to store positions and velocities and then, using this information, associate
incoming targets with the stored profiles. Using these new targets, the tracker updates its
information about positions and velocities to prepare to do the entire process again when it
is given the next set of targets.
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1. INTRODUCTION

A kinematic tracker is a classical tracking system. The idea behind kinematic tracking is to store
positions and velocities and then, using this information, associate incoming targets with the stored
profiles. Using these new targets, the tracker updates its information about positions and velocities to
prepare to do the entire process again when it is given the next set of targets.

This report discusses kinematic tracking as it was adapted for use in Feature-Aided Tracking (FAT
[5]), which will be used as the tracker component for a later release of the Integrated Radar-Tracker
Application for the PCA program (initially only this kinematic tracker will be used). An overview of this
entire application can be found in [3] and discussion of the Ground Moving Target Indicator (GMTI) radar
component being used is contained in [7]. This report was mainly derived from a tracker implementation
and its documentation by L. Keith Sisterson, but includes modifications made by Duy Nguyen for the FAT
system as well.

1.1 KINEMATIC TRACKING—HIGH LEVEL DESCRIPTION

A tracker will receive information from the GMTI system regarding new target detections. On the
radar side this is often referred to as the detection list. FAT and the kinematic tracker it was built upon refer
to these either as measurements or target reports. These target reports make up half of the input to a tracker.
The other half of the input comes from the tracker itself, these being the tracks which were its output from
the previous scan. The track histories are referred to, and drawn, as a loop-back input as opposed to
persistent data; this reference is done for two reasons. The first reason is that radar is a streaming
application, and the output comes in discrete bursts (each burst referred to as a scan). Trackers then are
often thought of similarly because they are part of an overall radar system (even though they are arguably
closer to thread-based than stream-based computation). The second reason is that the track history for scan
n is the result from scan n-/, and drawing it as a loop-back system highlights this. A common reference
used in the remainder of this report will be a “track/report pair.” Pairing a track and a report means that the
report is considered to be the next part of the track. A tracker must, in some manner, consider all possible
track/report pairs to determine the continuation of the tracks.

1.1.1 Kinematic Tracking Overview

The diagram in Figure 1 is a convenient way to conceptualize the basic tasks which a kinematic
tracker must perform. Figure 1 diverges from the actual algorithm in that the stages of “Hypothesize
Associations,” “Extrapolate Tracks,” and “Compute Kinematic 9~ ” cannot so conveniently be separated
in a serial fashion. In the process of hypothesizing associations, one must extrapolate tracks along different
movement models and compute a kinematic %~ value for each. In this report, four movement models are
discussed; greater or fewer could be used as is appropriate for the specific application. The meanings of




these three steps will be explained separately, but the algorithmic implementations are too closely
intertwined to separate and will be treated together.
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Figure 1. Kinematic tracker logical diagram.

Hypothesizing associations considers all track/report pairs and determines which have a possibility
of being correct associations. First, it will be considered if the pairing is possible. Then all possible
pairings will need to be extrapolated along some number (three for this example) of known movement
hypotheses and an unmodeled maneuver hypothesis. Then these extrapolations must be judged to
determine which, if any, gives the most likely manner in which the specific target report could be the
continuation of the specific track. The metric used to determine this (also the overall likelihood that a
track/report pair is a correct pairing) is the kinematic X~ value (where smaller X values indicate greater
likelihood). The Munkres _algorithm is a method for finding the optimal assignment of tracks to reports
given a matrix of their %~ values. A Kalman filter is then used to update the tracks to take their newly

associated target reports into account.




A track itself is simply a manner of keeping track of an object across scans. Objects may stop and
begin moving again or move in and out of the area of interest, so the notion of beginnings and endings of
tracks needs to be dealt with (note that this may not be the case in the initially distributed data set, but false
detections and indistinguishable targets will still make this necessary). To deal with a track beginning,
tracks are separated into three different kinds of tracks: New, Novice, and Established. A New track is a
track that is just starting and has only the initial target report associated with it. Upon receiving another
associated target report, a New track will become a Novice track. A track is considered a Novice track as
long as any Doppler ambiguity exists. (Doppler ambiguity will be discussed in the next paragraph) Once
the Doppler ambiguity of a track has been eliminated, it becomes an Established track. Tracks are removed
when a certain period of time or number of scans has passed with no further associations to update them.
This would logically take place as part of, immediately before, or immediately after the Kalman filtering
stage.

The phenomenon of Doppler ambiguity rises because the measurements of Doppler frequency which
the MTI stage makes are modulo the pulse repetition frequency (PRF). This means that two targets that
differ in Doppler frequency by an integer multiple of the PRF will be seen as having the same Doppler
frequency. Note that if a target has a Doppler frequency equal to an integer multiple of the PRF, it may
have already been filtered out by the MT1 stage as a stationary object. In Introduction to Airborne Radar
(Chap. 25, [8]) low PRFs are given to be 250-4000 Hz, medium PRFs to be 10-20 kHz, and high PRFs
100-300 kHz. The choice of PRF relies on many factors, but generally a Ground Moving Target Indicator
(GMTI) radar (which is the MTI portion of this integrated radar-tracker application) will use a low or
medium PRF, and is therefore subject to Doppler ambiguity issues. The tracker needs to know the Doppler
frequency to calculate the velocity of a target, so it needs to know with greater precision than modulo the
PREF. There are various ways to deal with Doppler ambiguities; however, they all require state information,
so this will be the job of the tracker in this implementation. For more information on Doppler ambiguities,
see section “Potential Doppler Ambiguities” on page 284 of Introduction to Airborne Radar [8]. (The case
of “PRF Less Than Spread of Doppler Frequencies™ applies to this discussion.)

1.1.2 Hypothesize Association, Extrapolate Tracks, Compute Kinematic x2

While these three logical operations cannot be readily separated algorithmically, it is algorithmically
possible to separate them into two stages. The first stage looks at all track/report pairs and uses geographic
location to eliminate impossibilities. The next stage examines each remaining track/report pair individually
to first eliminate kinematic impossibilities and then determine the correct motion model and " value for
possible pairings.

1.1.2.1 Reduce By Geographic Position

A sizeable amount of computation is done on each track/report pair which is being considered by the
rest of the algorithm. The purpose of this step is to eliminate geographically impossible pairings. Ground
vehicles can be assumed to have a low enough velocity that they will not move too great a distance



between scans. Using the report position, track position, and postulated maximum ground vehicle speed,
only certain track/report pairs will be possible, so all others can be ignored. This implementation will

geographically check all tracks for each incoming target report.

1.1.2.2  Examine One Track/Report Pair

For each target report, each track/report pair considered geographically possible by the previous step
will be tested. First an unmodeled maneuver model will be extrapolated to determine if the track/report
pair is kinematically possible, and if possible, then a ¥~ -like szllue will be calculated (for all track/report
pairs deemed geographically or kinematically impossible, the X value assigned is an arbitrary value large
enough to prevent the Munkres algorithm from choosing it over a viable association and no other
hypotheses are tested). Now the method of dealing with each pair diverges depending upon the status of
the track. For New or Novice tracks, Doppler ambiguity is checked, and the )~ -like value from the
unmodeled test is saved for this pair. For Established tracks, the track is extrapolated in three manners:
constant velocity; linear acceleration; and constant speed, arc_of circle. Each hypothesis for track
extrapolation will be considered in the order above and yield a ) value. Each will also have a separate
limit for congideration and use this to determine success or failure. If a motion model succeeds, the model
name and % are saved. In the case of failure, the next motion model is checked. After all models are
exhausted, the ¢~ -like value from the unmodeled test will be stored and “unmodeled” will be stored as the
motion model name. If the scan times are close together in time, most motion will be seen as constant
velocity. Note that the number and type of hypothesized motion models is dependent upon the application,
and more or less could be used.

1.1.3 Munkres Algorithm

The Munkres algorithm [4] is a method of uniquely associating things, one with another, while
minimizing a cost function. The cost function is used to populate a matrix of all possibilities. The Munkres
algorithm then chooses associations by choosing exactly one member of each row and column such that
the sum of the chosen elements is minimized. In a kinematic tracker, the Munkres algorithm is one option
to use to decide which reports will be assigned as the successors of which tracks. The original algorithm
requires a square input matrix and will associate all items. An extended version of this algorithm [1] is -
used here as it will work on non-square matrices and associates as many ite1121s as the minimum of rows and
columns. The matrix passed in is made of the kinematic X~ (or merged )~ for FAT) values. Recall that,
for track/report pairs determined to be geographically or kinematically impossible, a large = value will
have been used to prevent their selection if any other possible choices are available. The Munkres
algorithm will perform all optimal pairings, then will continue pairing those intended as impossible
afterward. Additional checks have been added to be sure no impossible pairings are passed to the Kalman

filter as being associated.




1.1.4 Kalman Filtering

A Kalman filter is a classical way to update knowledge with measurements. The idea behind a
Kalman filter is that any measurement has an associated uncertainty. Different measurements may have
different uncertainties. By using multiple measurements and taking their respective uncertainties into
account, a more accurate estimate may be made. It would be impractical to store each and every
measurement, especially considering that the total number of measurements may be neither known nor
likely to be few. The Kalman filter deals with this by taking two separate measurements with two separate
errors. Using this information, it determines a new estimate based on both measurements, which will
presumably be a better estimate than either measurement separately. The Kalman filter will also determine
an error for the new estimate. In this way, only one former state need be saved, and each new measurement
is simply applied to the aggregate history and a new aggregate history is formed. In the kinematic tracker,
a Kalman filter is used to update the track histories with their new target reports. An intuitive explanation
of Kalman filtering can be found in [6], and a more rigorous description can be found in [2]. (Section 5.5 of
[2], “The discrete Kalman filter,” starting on p. 214 discusses a Kalman filter similar to the one used in this
tracker in greater depth than covered here.)

1.2 PARAMETERS

This section explains parameters which are needed as inputs and controls for the operation of the
kinematic tracker. The output values are also discussed. Because the tracker works as a loop-back system,
it will be taken as understood that the output for one stage is also the input of the next, and outputs will not
be listed twice below.

1.2.1 Input Parameters

There is really only one external input, the target-report list. The target-report list will be signified by
the one-dimensional array M[], each element of which will be a structure. M[] will have a member
structure named cent (short for centroid). The target-report list will be what will populate cent in the
appropriate member of M []. Table 1 outlines the data members of the elements of cent which need to be
populated before passing them to the tracker. Shaded elements are data members used by later stages of the
overall FAT algorithm, but not by kinematic tracking. Note that cent was based upon the input structure
used in the system this tracker was based upon, and a different input structure is used by the GMTI system
attached here.



TABLE 1
Pre-Populated Data Members of cent

rg Range position of target. This is used primarily to determine ground
position.

az Azimuth position of target. This is used primarily to determine ground
position.

dop Doppler measurement for target. This is used primarily to measure the
target's radial velocity.

time Time stamp for when this detection was made.

snr Signal-to-noise ratio (SNR) of detection. This is a measure of the relative
strength of the target detection.

nrr . | High range resolution {(HRR) profile for target.

1.2.2 Output Parameters

The output is also composed of a structure. It is the list of tracks recognized by the kinematic tracker.
The track list will be signified by the one-dimensional array T [] . The purpose of the track list is two-fold.
One is as output to a user; the other is as loop-back input to the tracker. Table 2 outlines the data members
of the elements of T[] which are used outside the current scan with the kinematic tracker. Shaded
elements are data members not of direct interest to a human user, but are used either in the loop-back input

or in other sections of the overall FAT algorithm.




TABLE 2
Pre-Populated Data Members of T[]

snr SNR of last target report associated with this track. This is a
measure of the relative strength of that target detection.

X Estimated x-coordinate of target at time time.

y Estimated y-coordinate of target at time time.
v a Estimated velocity of target in the x direction at time time.

Estimated velocity of target in the y direction at time time.
Tlme stamp for the Iast target report assomated with this track

ypothesis
‘ e s

“this track

1.2.3 Control Parameters

There are multiple control parameters. In the implementation these will be part of a structure (see
Section 3.4). However, a structure is not necessary, so for the algorithm they will be treated as separate
values. Parameters important to the algorithmic description or general conceptual understanding are listed
in Table 3.



TABLE 3

Control Parameters for Kinematic Tracker

Maximum number of target reports allowed (necessary only for

MaxNumReports
worst-case analysis or memory restrictions of actual
implementation). This parameter is not used in the Matlab
implementation.

MaxNumTracks Maximum number of tracks allowed (necessary only for worst-case
analysis or memory restrictions of actual implementation). This
parameter is not used in the Matlab implementation.

maxSpeed Assumed maximum possible speed for a target.

maxAccel Assumed maximum possible acceleration for a target.

RVar Variance in range measurement from GMTI stage.

AzVar Variance in azimuth measurement from GMTI stage.

DopVar Variance in Doppler measurement from GMTI stage.

CVHLimit Limit used to test constant velocity hypothesis.

LATHLImit Limit used to test linear acceleration hypothesis.

ArcHLimit Limit used to test constant speed, arc of circle hypothesis.

cvsq Used to compute process noise covariance matrix for constant
velocity hypothesis.

latsq Used to compute process noise covariance matrix for linear
acceleration hypothesis.

mnsq Used to compute process noise covariance matrix for constant
speed, arc of circle and unmodeled hypotheses.

NewLimit Limit to how long a New track is kept if not updated.

NoviceLimit Limit to how long a Novice track is kept if not updated.

EstablishedLimit | Limit to how long an Established track is kept if not updated.

GridXNearRatio Ratio to define the concept of a track being “near” a target report in
the X direction for geographic decimation.

GridYNearRatio Ratio to define the concept of a track being “near” a target report in
the Y direction for geographic decimation.

PlatformXPos X position of radar platform by the XY grid used for targets (Y

position of platform is 0).

(&



2. FUNCTIONAL OVERVIEW

This section will cover the base functionality required by the kinematic tracker. Only the general
required functionality of a kinematic tracker is discussed here. The methods in this section for performing
operations are generalizations of what is necessary and required for the operations, and may not be
reflections of the Matlab implementation. This is done to hopefully help highlight areas open to new
implementations to take advantage of PCA hardwares’ unique characteristics. The section
“Implementation Considerations” will contain some discussions about basic performance improvements.
Functions which act as translators between systems, parameter filters, and other implementation “glue,”
though necessary, are not discussed in this report.

In this section (and throughout the report) C++-style pseudocode is used, although Matlab code is
provided for implementing this tracker. This was chosen mainly to avoid the potential confusion of
variable types in Matlab.

2.1 H2YPOTHESIZE ASSOCIATION, EXTRAPOLATE TRACKS, COMPUTE KINEMATIC
X

These three stages are once again divided along the lines of an initial decimation by geographic
position and then an examination of each remaining track/report pair.

2.1.1 Reduce By Geographic Position [get tracks_near ()]

Input: This operation requires as input the track list T [] and target report list M [] . The sizes of these
lists will vary from scan to scan; however, they may be bounded by MaxNumTracks and MaxNumReports.

Output: The output of this operation is logically a boolean association matrix Assoc. Assoc will
be of size ¢ X m, where ¢ is the number of elements in T [] and m is the number of elements in M [] .

All track/report pairs must be examined. Later stages may perform large computations for each
track/report pair that must be operated upon. This stage acts as a first cut. The conceptual algorithm for
doing this is as follows:

for(int i=0; i<length(M); ++i)
for(int j=0; j<length(T); ++J)
if (near(MI[i],TI[3]))
Assoc[j] [i] =true;
else
Assoc[j] [i]l=false;



The function length () is considered to return the number of elements of the array which it is
passed as input. The function near () returns a boolean value indicating if the input target report is
sufficiently close to the input track. The actual definition of near () is unimportant to the algorithm as
long as it always returns true when the track/report pair is a correct association. A function always
returning true would be acceptable for the algorithm. Discussions on the concept of being geographically
near and on efficiency can be found in the section “Implementation Considerations.”

2.1.2 Examine One Track/Report Pair [associate ()]

Input: This operation will require the track list T [], target report list M[], and boolean association
matrix Assoc. Assoc is of size # X m where # is the number of elements in T[] and m is the number of
elements in M [] . The number of elements in T [} and M [] will vary from scan to scan; however, they may

be bounded by MaxNumTracks and MaxNumReports.

Output: The output of this operation will be a possibly modified boolean association matrix Assoc,
a chosen hypothesis matrix Hyp, and a matrix of the calculated kinematic X~ values Kin_X2. All three of
these matrices will be of size # X m where ¢ is the number of elements in T[] and m is the number of

elements inM[].

This process will loop over all track/report pairs. If it finds in Assoc that the pair has already been
marked false, then the equivalent entry in Kin_X2 will be set to a suitably large value to avoid being
considered viable by Munkres (100 chosen for Matlab code). If the pair has been marked true, then an
unmodeled test will take place. The unmodeled test computes a limit on the distance between the target
report and the extrapolated position of the track. The limit to determine if the unmodeled test is passed
corresponds to nine times the variances from all the sources of error plus the distance the target could move
(from the initial track position) if it accelerated at maxAccel. If the unmodeled test fails, then Assoc is
modified to mark this pairing as impossible and Kin_X2 is set to the same large value as it would had it
failed previously. If it passes, then a ¥~ -like value is computed, made too large to be chosen in place of a

modeled association, and saved.

. . . 2, . .
For New or Novice tracks, Unmodeled is saved in Hyp and the unmodeled ¥ is saved in Kin_X2.
Doppler ambiguity is also examined, but the results do not alter execution of this stage.

For Established tracks, the unmodeled test will have been calculated with slight differences to take
more knowledge into account. The primary difference is in the use of the plant-noise matrix Q. The plant-
noise matrix is dependent upon the difference in time between the target report and last track update and a
parameter g (full definition of Q can be found in Section 2.3). For an Established track, the unmodeled test
uses a Q with q equal to one-third the square of maxAccel. After passing the unmodeled test, an Established
track tests, in order, the constant velocity hypothesis, the linear accelerating track hypothesis, and the arc-

of-circle hypothesis.
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2.1.2.1 Constant Velocity Hypothesis

The track extrapolation for this hypothesis is the same as the unmodeled computation but with a
different plant-noise matrix Q. For the constant velocity hypothesis, the parameter cvsq is used for g in
forming Q. The main difference is that an actual )~ is computed as follows:

7 2

» o (d,—d)

L= S5t (1)
Gr 6d+6dt

. . . . 2
where d is a Doppler value, r is the radial distance between the extrapolated track and target report, and G
is the variance. The value of G, is calculated as follows:

2, 2 2 2, 2 .2
2 — (xm_-xl) (0x+cx[)+(ym._y1) (Gy+Gy[)+2(xm~xt)(ym_y[)(cxy+Gx[yt)

o, >
-

e

The calculated "~ is then tested against parameter CVHLimit. If it is within the limit, then constant
velocity is saved in Hyp and the %~ is saved in Kin_X2. If it is outside the limit, then the next Hypothesis
is tested.

2.1.2.2  Linear Accelerating Track Hypothesis

The track position and X2 are extrapolated as follows:

-2
. xt
X, = xp+xt+—2— 3)
oyl
Y=y, Tyt+— (4)
! P 2x
oo A 2
, ((x+xt)sina+(y+—%)cosa—dm) 2
r
X = 1, 2 ~ = )
+0 )
04 dt r

There are two tests for success here. The first is to test that the Xz is within the confidence limit
parameter LATLimit. The second is to make certain that the acceleration computed from a least-squares fit
of the target-report position to the extrapolated track position above is not greater than the parameter
maxAccel. If both of these tests are passed, then linear accelerating track is saved in Hyp and the ) is
saved in Kin_X2. If either test fails, the next hypothesis is tested.

11



2.1.2.3  Constant Speed Arc-of-Circle Track Hypothesis

The arc of a circle is constructed from the track position and direction compared to the current target
report. .~ is calculated as follows:

. . 2
2 (xsina +y,cosa—d,,) (vt—s)2

2

2+ 2 2+ 2 (6)
o.a’ o-dt th Gs

4

2.2 . . 2 . 2
where v = Alx_ +y  (speed of the target), s = distance along arc of circle, ¢, = variance of v, and 6 =
variance of s. The only test performed is |~ against the parameter ArcLimit. If the test is passed, constant

speed, arc-of-circle is saved in Hyp and the )~ is saved in Kin_X2.

If all three of these models fail, then Unmodeled is saved in Hyp and the previously saved
unmodeled %~ -like value is saved in Kin_X2.

2.2 MUNKRES ALGORITHM [MUNKRES () ]

Input: This general algorithm only requires the matrix of Xz values Kin X2 (or the merged
FAT_ X2 if FAT is being used). To easily include checking for geographically or kinematically impossible
associations, the boolean association matrix Assoc will also be passed as input. The size of these matrices
is £ X m, where ¢ is the number of elements in T [] and m is the number of elements in M [ ]. The number
of elements in T[] and M[] will vary from scan to scan; however, they may be bounded by

MaxNumTracks and MaxNumReports.

Output: The output is an optimal list MunkresResult [] of chosen track/report pairings. The
elements of the list will be tuples indicating the pairing. This list will include unassociated tracks and
unassociated target reports as being associated with a null value (this implementation used —1 for this null
value). The size of the list may be at worst £ + m and at best max(z, m), where t is the number of elements in
T[] and m is the number of elements in M[1].

The following is quoted directly from pages 803 and 804 of [1]. In the paper, the original Munkres
algorithm is first listed, then changed steps are listed for the extended Munkres algorithm. In the interests
of clarity, quotes of the steps from the original algorithm are being substituted in the paper where they
belong in the quote of the extended version.

12




"The statement of the extended algorithm follows.

Preliminaries. (a) k = min (n, m), no lines are covered, no
zeros are starred or primed. (b) If the number of rows is greater
than the number of columns, go at once to step 0. Consider a par-
ticular row of the matrix (aij); subtract the smallest element from
each element in the row; do the same for all other rows. If the
number of columns is greater than the number of rows, go at once to

step 1.

Step 0. (¢) For each column of the resulting matrix, subtract
from each entry the smallest entry in the column.

Step 1. Find a zero, Z, of the matrix. If there is no starred
zero in its row nor its column, star Z. Repeat for each zero of the
matrix. Go to step 2.

Step 2. Cover every column containing a 0*. If k columns are
covered, the starred zeros form the desired independent set. Oth-

erwise, go to step 3.

Step 3. Choose a noncovered zero and prime it; then consider
the row containing it. If there is no starred zero Z in this row,
go to step 4. If there is a starred zero Z in this row, cover this
row and uncover the column of Z. Repeat until all zeros are cov-

ered. Go to step 5.
Step 4. There is a sequence of alternating starred and primed
zeros constructed as follows: let Z;, denote the uncovered 0'. Let

Z, denote the 0* in Z's column (if any). Let Z, denote the 0' in
Z,'s row. Continue in a similar way until the sequence stops at a
0', Z,,, which has no 0* in its column. Unstar each starred zero of

the sequence, and star each primed zero of the sequence. Erase all
primes and uncover every line. Return to step 2.

Step 5. Let h denote the smallest noncovered element of the
matrix; it will be positive. Add h to each covered row; then sub-
tract h from each uncovered column. Return to step 3 without alter-
ing any asterisks, primes, or covered lines."

Note that the above algorithm terminates through step 2. The result MunkresResult []1 will be
generated by using the coordinates of the zeros of the resultant matrix. The Munkres algorithm may have
chosen geographically or kinematically impossible associations where no possible association was
available. To eliminate these, each response pair will be tested against Assoc. If a pairing is found which
is marked impossible within Assoc, then the original pair will be replaced by two new pairs, with each
element of the first pair paired with some sort of null value (-1 is used in the provided Matlab code). After
the entire MunkresResult [] list is checked, then the matrix result from the actual Munkres algorithm
will be examined for rows or columns containing no zero (which must exist if the matrix is not square).
The equivalent tracks or target reports will each be appended to the list in a new tuple with the null value as
their partner.

2.3 KALMAN FILTERING [Kalman () ]

Input: This operation will require as input the optimal pairing list MunkresResult [], the track
list T[], and the target report list M [1. The size of an element of MunkresResult [] is the size of two

13



references (integer index, pointer, or whatever else might be convenient for the given implementation), and
the length of the list is at worst ¢ + m and at best max(z, m), where ¢ is the number of elements in T [] and
m is the number of elements in M []. The number of elements in T [] and M [] will vary from scan to scan;
however, they may be bounded by MaxNumTracks and MaxNumReports.

Output: The updated track list T[] is the output. The length of T[] will vary from scan to scan.
Recall that an actual Kalman filter is run only on Established tracks, so the Kalman filter itself will not
change the size of T []. The additional step of creating new tracks with unassociated target reports will
increase the size of T[], and the possible removal of tracks not updated in a certain specified time will
decrease the size of T[], so the output and input sizes of T[] need not match. The size can still be

considered bounded by MaxNumTracks though.

For New tracks, covariance matrices are initialized and relevant initial information is stored. For
Novice tracks, velocity windows are examined to determine if there is enough information to resolve
Doppler ambiguity. If there isn't enough information, the target report is saved. Once there is sufficient
information, then the state is set to Established and the Kalman filter is recursively run on all previously
saved target reports (in chronological order) and then on the current one (the maximum set in the original
code is five saved target reports plus the current one). For Established tracks, an actual Kalman filter will
be performed. A description of the operation in matrix notation (along with matrix definitions) is below.
Note that the subscript k indicates the current scan, so k—/ indicates the most recent prior scan:

The true current state:
X, = 9, _1%;_, tnoise @)
1) The current target report can then be represented as follows:
z, = Hypx, +noise ®

1 0 0 0
(where H, = |0 0 1 0 | witha=azimuthangle)

0 sina 0 cosa
2) The initially extrapolated next state for the track:
- +
X = Op 1%k ®
3) The error covariance matrix for the initially extrapolated next state:

- + T
P = 0 1 Pr_10p 1+ Oy (10)
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4) The Kalman gain stage 1:
1 - - T -1
K, = P H [HPH,+R]

(where H, = 1000)
0010

5) The error covariance matrix is then updated:

1 -
Py = - K H]P;

(where H, = 1000)
0010

(1)

(12)

6) The extrapolated track covariance matrix is set to the updated track covariance matrix:

Pp =Py
7) The Kalman gain stage 2:
Ky = PLH{HPH] + 03]
(where H; = [0 sina 0 cosa:l with a = azimuth angle)
8) The final error covariance update:
P, = U-"K;H, P,
(where H, = [0 sina 0 cos a] with @ = azimuth angle)

9) The state estimate update:

x; = x,+ K, [[I- BK, X[z, — Hxp]]

1 0 0 O 0 0 0 O
(where H, = |0 0 1 0 [ K= [lKk ZKIJ’B =10 0 0 O
0 sina 0 cosa 0 sina 0 cosa

with a = azimuth angle)
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(14)

(15)

(16)

100
,and X = [p 10
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The meanings or definitions of the other matrices are as follows:

Xl where x and y are coordinate positions and x and y are velocities in the
X, x;p or i b respective coordinate directions. These are members x, x_dot, y, and y_dot,
4 . . - -
k y respectively, of elements of T[] .
Y]

) *|' where x and y are coordinate positions and d is the velocity in the radial direction. These are
Zk * |¥|  members x, v, and dop, respectively, of elements of M[].

d
100
4 = 0100 where 7 is the time between the target report and last track update.
1 oot s
0001
Py Py Py Py P}, is referred to as Pm and PZ as Pp. These are stored as members of
Por P P, Ps P¢ P;| elements of T []. These are covariance matrices for the updated states
ke OT £ Py Pg Py Py generated by the Kalman filter.
_P4 P, Py Pm_
C L -
a9t o ¢
3 2
q t2 where ¢ is the time between the target report and last track update and g is
2 gt 0 0| aconstant dependent upon the motion model last chosen to describe track
Qr-1 = 3 | movement. This is stored as member Q of elements of T[] .
o o 4L 9L
3 2
2
t
0 0L 4
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R, R, is the target report measurement covariance matrix. It is calculated using the MTI

R, results and the parameters RVar, AzVar, and DopVar, which would be taken from the
R, Ry MTI’s system specifications. It is stored as member R of elements of M[].
K, K, is calculated and used within the Kalman filter. It is stored as member K1 of elements
K A
KS K6
K7 Ky
K9 is calculated and used within the Kalman filter. It is stored as member K2 of elements of
2., |Kyp| TII.
Kk :
K 11
K12

I: identity matrix of appropriate size for computation.

After this computation, xz (the estimated position for the track) is the nominal result, and xz and
P; are stored for use in the next iteration. The above steps 1-10 describe a Kalman filter. Other
computations listed in this section are related in purpose for the kinematic tracker, but are not actually part
of a Kalman filter. The Kalman filter portion may be extracted for reuse in FAT for the intermediate
deliverable. All track/report pairs for FAT will be extrapolated with a Kalman filter and their aspect angle
will then be estimated (discussed in Appendix A).

It should be noted that only elements x, x_dot, y, y_dot, status, and Pp of elements of T[]
are updated by the above operations. To fully update a track, the other required elements (snr, time,
class, aspect, hrr, and Hypothesis) are directly replaced by the value belonging to the target
report that the track was just associated with.

The final step which needs to be performed to update the track list is to examine each track in
MunkresResult [], which is paired with a null value. The t ime member of the track will be compared
against the t ime member on target reports in the current scan. If this difference is larger than that allowed
in the limit for tracks of its status (parameters NewLimit, NoviceLimit, and EstablishedLimit), then the
track is removed. If MaxNumTracks is exceeded, then tracks may be removed by a chosen policy. One
policy might be to decrease the time allowed for waiting on associations before being removed. Another
might be to remove the tracks with the lowest snr. Note that the Matlab code delivered does not actually
use a MaxNumTracks value, so no tracks will be dropped by the Matlab code for this reason.
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3. DATA STRUCTURES

A variety of data structures are used in the tracker. Below is a discussion on the initial proposition for
their specific structure. The definitions will be given in a C style (note that in C pointers are generally used
to declare dynamically resizable arrays).

3.1 TARGET REPORTS

The structure for target reports is a simple structure, the global list of which has been referred to as
M[] in this report. The centroid structure will contain the information from the MTI report which will be
saved in the target report. Additional information (such as the cosine of the azimuth angle) is stored in this
structure for convenience.

struct target report

{

struct centroid cent; //contains original info passed in
// from MTI

double Range; //These three parameters are the

double Azimuth; // ground values of rg, az, & dop

double Doppler; // in cent (the values in cent may
// be absolute or may be indices).

double sin az; //sine of the azimuth angle

double cos_az; //cosine of the azimuth angle

double sdsqd; //doppler variance (in m/s)

double abs dop; //corrected doppler (in m/s)

double R{[2] [2]; //measurement (x,y) covariance

// matrix

19



struct centroid

{

int rg; //range gate index or absolute

// range in meters for this target
int az; //beam index or absolute azimuth

// angle in radians for this target
int dop; //doppler bin index or absolute

// doppler in m/s for this target
double time; //time stamp associated with this

// target
double snr; //SNR for this target

//double hrr[hrr sizel;
//will be introduced for FAT.
//vector containing the HRR

// profile for this target
//additional members to be populated by the tracker
// all this information should be redundant with the

// above info.

double x; //x coordinate of this target
double y; //y coordinate of this target
}

3.2 TRACK

The track structure is a simple structure, the global list of which has been referred to in this report as
T []. This structure is used both as output and input, though only a subset of the structure is required in the

following scan.
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struct track_history

{

char status|];

double x pos;

double y pos;

double x vel;
double y vel;
double snr;

double time;
// double hrr[hrr size];

//string containing status
// (enum should be used in
// compiled

// implementation)

//x coordinate of

// estimated position of
// track

//y coordinate of

// estimated position of
// track

//estimated x direction

// velocity of track
//estimated y direction

// velocity of track

//enr from last associated
// target

//time from last target

//will be introduced for FAT.

// struct classification class;

//hrr from last target

//will be introduced for FAT.

// double aspect;

//prior classification
// vector, computed by
// Bayesian classifier.

//will be introduced for FAT.

//additional members
struct VelWindow vw[5];
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struct CVHFilter cvhf; //Abstraction from
// original system, may be
// removed.
struct target report Msave [5]; //saves old targets for
// New/Novice tracks until
// they become established
char HypothesisI[]; //string containing
// hypothesis (enum should
// be used in compiled
// implementation)

double QI[4] [4]; //process noise covariance
// matrix
double Pm[4] [4]; //initial extrapolation
// covariance matrix
double Ppl[4] [4]; //updated extrapolation
// covariance matrix
double K1[4] [2]; //Kalman gain stage 1
// matrix
double K2[4] [1]; //Kalman gain stage 2

// matrix

}

struct VelWindow

{

int active; //indicates state of this
// velocity window

double xdot; //x direction velocity

double ydot; //y direction velocity

double xdotvar; //variance in x direction
// velocity

double ydotvar; //variance in y direction
// velocity

double xydotvar; //covariance between x and

// y velocities

}

struct CVHFilter

{

double x; //%x coordinate
double y; //y coordinate
double xdot; //x velocity
double ydot; //y velocity
}
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3.3 ASSOCIATION MATRICES

These matrices are simply ¢ X m matrices, where ¢ is the length of the global track list for the current
scan and m is the length of the global target report list for the current scan. Because the sizes of these lists
may change from scan to scan, the dimensions of these matrices also may change. There will be three or
five matrices of this size. For simple kinematic tracking, the matrices are Assoc, Hyp, and Kin_X2. For
FAT, the additional matrices CAT or_ SAT X2 and FAT_X2 are also used (though Kin_X2 will be
copied to FAT X2 in simple kinematic tracking). A dynamically resizable matrix in C is represented by a
double pointer. Because a string in C is usually represented by a char*, a matrix of strings will be
represented as a triple pointer. A matrix of arrays would also be represented as a triple pointer.

bool **Assoc; //T/F matrix based on geographic
// feasibility
char* **Hyp; //matrix of strings keeping track

// of which hypothesis was last
// chosen (enum should be used in
// compiled implementation)
double **Kin X2; //contains X"2 values for
// kinematic tracker
double **CAT or SAT X2; //contains X*2 values for CAT or
// SAT (whichever is used)
double **FAT X2; //contains final/merged X2
// values.
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TRACKER PARAMETERS

This simple structure holds the control parameters used for the tracker. These will be set by an

initialization function and perhaps never changed after that.

struct TrackerParameters

{

bool UsingExact;
double SpeedOfLight;
long MaxNumReports;

long MaxNumTracks;

//specifies if centriods report
// absolute or index values.
//Make sure all parts of IRT

// use same approximation.
//maximum number of reports

// considered

//maximum number of tracks kept

//the following four parameters are used to determine
// how far a target may move between scans.

double maxSpeed;

double maxSpeedsqd;
double maxAccel;

double maxAccelsqd;

//maximum speed considered
// (m/s)

/ /maxSpeed*maxSpeed
//maximum acceleration

// considered (m/s”2)

/ /maxAccel*maxAccel

//the following three parameters are used to
// formulate measurement covariance matrix R

double InvalidChiSqgd;

double MaxPosDiff;

int NumAzBins;

double TotalAzCoverage;
double AzDegPerBin;
long NumRangeBins;

int NumDopBins;

double DopMpSPerBin;

//Chi squared value to indicate
// impossible pairing

//Maximum possible difference
// between target report and

// unmodeled extrapolation
//The number of azimuth bins

// used by GMTI

//Total azimuth coverage of

// GMTI in radians.

//The degree extent of one

// azimuth bin

//The number of range bins used
// by GMTI

//The number of doppler bins

// used by GMTI

//The coverage (in m/s) of one
// doppler bin.
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//the following three parameters represent how often
// pulses are sent and what percentage of the time is
// spent transmitting.

double PRF; //Pulse Repetition Frequency
double PRI; //Pulse Repetition Interval
double DutyCycle; //Percentage spent transmitting
double CPI; //Number of pulses collected

// by GMTI for one data cube
double CPIDuration; //Time between receipt of scans

// for the tracker (minimum is
// CPI * PRI)
double ScenarioTotalTime; //Time entire scenario takes

double DeAlias; //used to de-alias Doppler
// measurements
double ExXpSNR; //Expected SNR for targets, for

// use in calculating variances
// theoretically

double PerfectRVar; //variance used for range in
// truth data

double PerfectAzVar; //variance used for azimuth in
// truth data

double PerfectDopVar; //variance used for Doppler in

// truth data
// Note that the below variances may be set either as
// theoretically derived or statistically derived
// variances. Statistically derived variances are used
// for the delivered implementation.

double RVar; //variance on range measurement
double AzVar; //variance on azimuth

// measurement
double DopVar; //variance on doppler

// measurement
//the following three parameters are used to test if
// the corresponding hypothesis is correct.

double CVHLimit; //Test limit for Constant
// Velocity Hypothesis
double LATHLimit; //Test limit for Linear,

// Accelerating Track
// Hypothesis

double ArcHLimit; //Test limit for Arc of Circle
// Hypothesis
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//the following three parameters are used for the
// values of g in computing the process noise
// covariance matrix Q.

double

double

double

cvsq;

latsqg;

mnsq;

//mean square acceleration
// plant noise for constant
// velocity hypothesis
//mean square acceleration
// plant noise for linear,
// accelerating track

// hypothesis

//mean square acceleration
// plant noise for arc and
// unmodeled hypothesis

//the following three parameters are used to decide
how long a track may be kept without an update.

//
double
double
double

double

double

NewLimit;
NoviceLimit;
EstablishedLimit;
PlatformHeight;

PlatformXPos;

//Time limit for New tracks
//Time limit for Novice tracks
//Time limit for Established

// tracks

//Height, in meters, of

// stationary radar platform
//X position of radar by the XY
// grid used with targets (Y

// position is 0)

//the following six parameters are used for the
simple geographic grid structure being used in the
Matlab code. Others would be used for different
geographic schemes.

//
//
//
double
double
double
double

double

GridEltXSize;
GridEltYSize;
GridXwidth;
GridYwWidth;

GridXNearRatio;

//X width of one element of the

// grid

//Y width of one element of the

// grid ®
//X width of entire grid (must
// accommodate radar scan)

//Y width of entire grid (must
// accommodate radar scan)
//Ratio to determine nearness
// in X
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double GridYNearRatio; //Ratio to determine nearness

// in Y
double MinTimeExtent; //Minimum time within PRI

// before GMTI may receive.
double RangeMultiplier; //Used in determining range for

// range bin to absolute range
// calculation.

3.5 EXTRAPOLATED TRACK POSITIONS

This data structure is a simple container for track extrapolations. A vector could be used instead, if
desired.

struct ExtrapolatedTrackPosition

{

double x; //x coordinate position
double vy; //y coordinate position
double xdot; //x direction velocity
double ydot; //y direction velocity
double Doppler; //radial direction velocity

}

3.6 MUNKRES RESULT

This is a simple vector of integer tuples (or a two column/row matrix of integers) giving back
associated track/report pairs as each element. The length of this vector will fluctuate not only with the
number of tracks and reports in a given scan, but also with the results of the Munkres algorithm. If all new
reports are geographically too far away from all existing tracks to be possibly the same, then the length of
the vector would be the Num_Reports + Num_Tracks, whereas the case where all reports and tracks might
possibly be associated would result in max(Num_Reports, Num_Tracks) tuples.

struct tuple //struct for readability
{
’ int pair[2]; //holds a track/report
| //association

‘ }
v struct tuple *MunkresResult; //dynamically allocate the
// number of these tuples
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4. IMPLEMENTATION CONSIDERATIONS

The major portion of implementation considerations examined by this report is related to the process
of reducing the number of track/report pairs using geographic information. This particular area is focused
on because its results determine the difficulty of the rest of the computation (save for Kalman filtering).

The simple loop method listed in Section 2.1.1 for geographic reduction is obviously an expensive
way to do geographic reduction and is not preferred. A more desirable method would be to use a custom
structure to accept queries. Perhaps the simplest structure which can be used is a grid. A grid would simply
be a matrix of track reference lists corresponding to locations on the ground. Every target report would fall
within some grid element; the track lists from that grid element and grid elements sufficiently close would
then all be returned as the possible tracks. The coarseness of this can be adjusted with the size of grid, the
element, and the method for determining which other grid spaces are near enough to the target. More
complex database methods could also be used. A more complex idea would be to use two indices; one
sorted along x position and the other along y for the track list. A query could then give a position and a
distance from that position, and a range select could be performed on both lists and the intersection of the
results returned. Other methods might also present themselves from a specific parallel design.

The choice for geographic reduction methods is a careful trade-off. It is done to save computation,
but using too complex a method will simply waste computation. Because there is a second round of
elimination with the unmodeled test, it does not make sense to choose a method more complicated than
performing the unmodeled test on all potential track/report pairs. Where more target detections are
expected or the probability of false alarms is high, this method becomes more important. Recall also that
extra target reports may enlarge the computational load both present and future, as they will be added as
new tracks for the next scan.

Another concern for processing load is frequency of tracks missing some number of target report
associations. Tracks will be dropped if enough time goes by with no additional associations, but they are
not dropped immediately. The problem which arises is that the last estimated position of the correct track
will be significantly farther away from the target report than would be expected for the normal case. The
simplest solution for this is to keep the geographic reduction fairly coarse. A more complex solution might
be to keep separate structures for tracks depending upon when they were last updated or to include
elements of time in the database query capabilities.

The Matlab implementation will use a simple grid method for this computation. The test of nearness
will be as follows: if a target is within a certain ratio of the space of the grid element from one border
(specified by parameters GridXNearRatio and GridYNearRatio), then the neighboring element will be
considered. If two neighboring elements are being considered, then the diagonal element between them
will also be considered. This grid method, with appropriate grid element size and nearness ratios, will be
considered coarse enough that tracks which have missed updates will still be within the returned list of
possible tracks. This operation will be encapsulated in the function get_tracks_near (), so with only
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the change in this function and the update function [update track_locations()] an alternate
method can be used.

Another location which might easily accept optimizations is the MunkresResult [] list. It may
be decided to not include tracks when associated with null (or reports or even both). This would reduce the
immediate amount of data needed to be passed around, but the information about which tracks and reports
are unassociated is needed eventually, so it would need to be determined again in some manner.
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APPENDIX A
ASPECT ANGLE ESTIMATION

Using the assumption that the radar platform is stationary at coordinates (0,0), aspect angle
estimation can be performed in the following manner:

t-v
0 = acos 17
B3 (an
, = | cos® sinb . (18)
—sin® cos0
_ r-t
cosQ = EEYT (19)

If coso.— 1 1is smaller than a tolerance limit (10_9 used in code), then O will be returned as the
aspect angle. Should this limit fail, then 27t — 0 will be returned as the aspect angle.

Note that the radar is actually at position (PlatformXPos, 0), not the origin, so appropriate translation
must be performed on the coordinates.
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ACRONYMS

FAT - Feature-Aided Tracker

SAT - Signature-Aided Tracker

CAT - Classification-Aided Tracker
MTI - Moving Target Indicator [radar]

GMTI - Ground Moving Target Indicator [radar]
PRF - Pulse Repetition Frequency

SNR - Signal-to-Noise Ratio

CONVENTIONS

The courier font is used for programming code/pseudocode and also quotations (with a reduced
font size).
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